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NASA’s Near Earth Relay Satellite System
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Single Access Antenna

• S, Ku, Ka-band

• 225, 650 MHz bandwidth

• NASA’s Tracking and Data Relay Satellite System (TDRSS) has multiple 
communication relay satellites in geostationary orbits, and provides 
continuous coverage to low-Earth orbiting spacecraft

– Ku-band and Ka-band provide wideband (225/650 MHz), high data-rate 
channel for science data return

• NASA’s use of Ka-band through relay satellites and direct-to-ground is 
expected to increase significantly in coming years

• Improved bandwidth efficiency and reduced user burden will aid transition to 
Ka-band



Next Generation Near-Earth Network Concept
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• New/Enhanced Services Highlights
– Increased data rate (> Gbps)

– Improved networking (IPv6 & delay tolerant 

networking (DTN)

– On-demand, flexible service

– Messaging/control service (multiple access)

– Cognitive communications

– Inter-agency service management based on 

CCSDS standards 

• Earth Network Architecture 
– Full coverage network with relay orbiters in 

GEO & possibly other orbits

– Mix of NASA, commercial, & international 

service providers

– Ground/space assets for low end-to-end 

forward/return data latency

– Optical ground telescopes provide      

continuous optical support
Notional Earth Architecture



Flight Experiment Objectives and Goals

• Maximize throughput over the 225 MHz Ka-band relay channel using 

bandwidth-efficient techniques

• Develop methods to compensate for gain and phase distortions over the 

bandlimited channel, including non-linear distortions from travelling wave 

tube (TWT) amplifiers
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Modulation Code

Rate

Data rate through 225 

MHz (Mbps)

Current practice OQPSK, Low-pass Filtered 1/2

7/8

100

262

Experiment goal

Precoded GMSK, (BT=0.3) 7/8 175

OQPSK, (SRRC 0.2) 7/8 350

8-PSK, (SRRC 0.2) 7/8 525

16-APSK, (SRRC 0.2) 7/8 700

32-APSK, (SRRC 0.2) 7/8 875



Space Communication and Navigation Testbed on 

the International Space Station
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General Dynamics SDR
S-band Transceiver
(1) Virtex-2 FPGA
8W amp

JPL / L3-CE SDR
S-band Transceiver,
L-band (GPS)
(2) Virtex-2 FPGAs
7W amp

Harris Corporation SDR
Ka-band Transceiver
(4) Virtex 4 FPGAs, DSP
40W TWTA



Link Budget

SCaN Testbed - Ka-band Sub-System

– Gimbaled, 46 cm Parabolic Dish Antenna

– Closed-loop tracking via received signal strength

– Traveling Wave Tube Amplifier (40W, 45% efficiency)

*Operational testing with SCaN Testbed has observed 

C/N0 up to 99 dB-Hz, due to higher actual TDRS G/T
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Parameter Value

Frequency (GHz) 25.65

EIRP (dBW) 52.75

Channel Loss (dB) 212.59

Received Isotropic Power (dBW) -159.84

TDRS G/T specification (dB/K) 23

Boltzmann’s Constant (dBW/K/Hz) -228.6

TDRS Ku-band Downlink C/N0 (dB-Hz) 110.5

C/N0 at Ground Station (dB-Hz) 91.71*



High-rate Bandwidth-Efficient Transmitter
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Modulation: GMSK, BPSK, OQPSK, 4/8/16-PSK, 16-QAM, 16/32-APSK

Data Rate: Adjustable, 1000 Mbps

Pulse-shape Filtering: 128-taps, SRRC and RC, various roll-offs

Forward Error Correction: LDPC, AR4JA ½, 2/3, 4/5, C2 rate 7/8

Framing: CCSDS Framing and Randomizer

Digital Pre-distortion: Memory-less, Symbol Pre-distortion

Channel Pre-compensation: 32-tap FIR

Waveform is available via STRS Repository:  https://strs.grc.nasa.gov/



Experiment Test Configuration 
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White Sands 

Complex

SCaN Testbed 

on ISS

Ka-band Test 

Terminal

TDRS

Goal

• Maximize data-rate 

through TDRS

Challenges

• Band-limited channel

• Non-linear amplification

• Gain / phase distortions

• Feedback path

High-rate 

waveform on 

Ka-band SDR

Ka

Ka

Ku

COTS

High-rate 

Receivers Update pre-comp / 

distortion coefficients



Results Summary

• Ka-band Test Terminal enabled near 700 Mbps over the 225 MHz 

channel, band limiting distortions limited full potential

• SCaN Testbed achieved 400-500 Mbps with 8-PSK, LDPC 7/8, power 

and bandwidth limited 

– Performance varied between TDRS satellites (2nd vs. 3rd generation) 

and dedicated versus composite signal configuration
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Modulation Filter Encoding Ka-band Test 

Terminal

SCaN Testbed on 

ISS

GMSK Gaussian,

BT=0.3

Uncoded 200 Mbps*

OQPSK SRRC 0.2 LDPC 7/8 350 Mbps*

8-PSK SRRC 0.2 LDPC 7/8 525 Mbps (1e-10) 525 Mbps (1e-5)

16-APSK SRRC 0.35 LDPC 7/8

LDPC 2/3

678 Mbps (1e-9)

N/A

262.5 Mbps (1e-10)

433.3 Mbps (1e-8)

* Bit-error rate: 1e-12



Challenges due to bandlimited channel

• Substantial system loss as bandwidth 

increases.

– Receiver adaptive equalizer not 

sufficient, pre-compensation required 

at transmitter

• Highest symbol rates were problematic 

for adaptive equalizers to track – better 

performance with custom filter matched 

to channel

– Potential issue for operations at 

these bandlimited conditions –

spacecraft may need to re-train 

matched filters on ground receiver 

throughout mission
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Non-linear Digital Pre-distortion

• Primary source of non-linear distortion is the user space-craft power 

amplifier (e.g. TWTA)

• Static symbol predistortion (adjusting amplitude ratio and the relative 

phase between the inner and outer rings) 

• In-situ channel characterization – use measurements at ground receiver 

to automate channel correction

12



TWTA Optimal Drive Level

• Pre-distortion provided minimal gain 0-0.25 dB, depending on code rate

• Static pre-distortion was effective in improving performance and stability, especially near 

saturation point of amplifier 13



Summary and Conclusions

• Demonstrated reconfigurable bandwidth-efficient 

waveforms

• Validated user data rates 700 Mbps over the 225 MHz 

channel, with 500 Mbps from space flight radio

• Demonstrated digital pre-distortion and pre-

compensation techniques as companions for higher-

order modulations

• Modulation waveform code in STRS repository for re-

use
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Backup
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Next Generation SCaN Architecture Vision

• “Shrink” the solar system by connecting the principle investigator more 

closely to the instrument, the mission controller to the spacecraft, and 

the astronaut to the public

• Improve the mission’s experience and reduce mission burden – the effort 

and cost to design/operate spacecraft to receive services from SCaN 

Network

• Reduce network burden – the effort and cost required to design, operate, 

and sustain the SCaN Network as it provides services to missions 

• Apply new and enhanced capabilities of terrestrial telecommunications 

and navigation to space, leveraging other organizations’ investments

• Enable growth of commercial services for missions currently dominated 

by government capabilities

• Enable greater international collaboration and lower costs in space by 

establishing an open architecture with interoperable services that can be 

adopted by international agencies and as well as NASA
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Planetary Networks: 

Earth, Moon & Mars – One Architecture 
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Architect for Flexibility, Scalability, & Affordability –

Implement as required to meet specific mission needs


